Новое направление в системах очистки теплообменного оборудования от отложений

При прохождении воды в межполюсном пространстве магнитного аппарата в воде образуются зародыши центров кристаллизации, которые вызывают объемную кристаллизацию солей жидкости. В результате вместо накипи образуется тонкодисперсная взвесь, частицы которой, достигнув определенного размера, образуют шлам.

Анализ существующих способов очистки

В настоящее время в теплоэнергетике основным теплоносителем является пресная вода, получаемая из природных источников, и содержащая большое количество различных примесей – от растворенных минеральных солей до органических соединений. При работе теплообменного оборудования примеси выделяются в твердую фазу как в виде накипи (отложения непосредственно на поверхности), так и в виде шлама. Отложения вызывают ухудшение теплопередачи, что приводит к снижению эффективности работы оборудования (перерасходу топлива, перегреву металла и т.д.).

Для предотвращения образования отложений проводят предварительную химическую обработку воды используемой в качестве теплоносителя, но данные мероприятия не обеспечивают 100% защиты от отложений. Поэтому в теплообменном оборудовании постоянно происходит образование различных отложений ухудшающих его работу и требующих периодической очистки.

Фактически существует два принципиальных метода очистки теплообменного оборудования — физический и химический. Обязательными требованиями для всех применяемых методов является полное удаление отложений из очищаемого оборудования и сохранение целостности его конструкций. Эти требования должны выполняться в условиях безопасности для персонала, в приемлемые сроки, с минимальным воздействием на окружающую среду.

В настоящее время используются преимущественно химические методы – химические промывки. В частности, практически на всех котельных широкое применение для очистки поверхностей нагрева получил метод кислотной химической очистки ингибированной соляной кислотой с последующим щелочением. Но при этом необходимо учитывать, что соляная кислота хорошо и быстро растворяет только карбонатные отложения. Если в отложениях присутствуют сульфатные и силикатные соли, которые фактически не растворимы соляной кислотой, то для проведения химочистки в соляную кислоту необходимо добавлять фтористые соединения ( NH 4 F , NaF , HF ). Как известно, фтористые соединения токсичны и, следовательно, возникают проблемы со сточными водами.

Кроме того, образование накипных отложений по периметру труб не равномерно. Обычно с “огневой” стороны их толщина в 2-3 раза больше. Следовательно, при проведении химической очистки кислотой часть поверхности труб очистится раньше и кислота будет реагировать с чистым металлом, подвергая его коррозии. Коррозионные процессы протекают более активно в заклёпочных соединениях (в клёпанных барабанах), вальцованных соединениях, сварных швах и т.д.

Иногда в экранных трубах конвективного пучка возникают, так называемые, “глухие пробки” из накипи длинною от 200 мм и более. При кислотной очистке наличие таких пробок приводит к необходимости замены труб.

Необходимо помнить, что проведение химических очисток теплоэнергетического оборудования требует строгого соблюдения техники безопасности, т.к. все применяемые реагенты в той или иной степени ядовиты, при работе могут вызвать химические ожоги, а при подогреве раствора – дополнительные тепловые. Необходимо также помнить, что при взаимодействии моющих растворов с отложениями и металлом оборудования выделяется водород, который в смеси с кислородом воздуха может привести к образованию легковоспламеняющейся и взрывоопасной “гремучей” смеси.

Около 30 лет назад был предложен способ борьбы с отложениями с помощью комплексонов, содержащих фосфоновые группировки – РО(ОН)2 и коплексонатов, производных от комплексонов. Данный химически метод основан на образовании прочных комплексных соединений с кальцием, магнием, железом и некоторыми другими соединениями в результате постоянного ввода в теплоноситель комплексона. При нагревании до определенной температуры эти комплексы остаются в растворенном состоянии и поэтому соединения кальция и магния не откладываются на поверхностях нагрева в виде накипи. Но необходимо учитывать, что в жесткой воде при температуре 120-125 °С комплексы распадаются.

Таким образом, несмотря на столь широкое распространение методов химических очисток теплообменных поверхностей, нельзя не отметить присущих им серьезных недостатков:

  • необходимость останова оборудования, сбора специальных промывочных схем с трубопроводами, арматурой, насосами и емкостями;
  • расход дорогостоящих реагентов и воды для собственно промывок и последующих отмывок поверхностей нагрева;
  • невозможность эффективной очистки оборудования из-за неравномерного распределения накипи по поверхности нагрева, как следствие – неполное удаление накипи;
  • необходимость пассивации металлических поверхностей после химочистки;
  • износ металла вследствие коррозионных процессов после трех-четырех химочисток;
  • образование большого объема сточных вод, зачастую содержащих токсичные вещества.

Кроме того, с первого же дня эксплуатации оборудования после химической очистки накипь начинает образовываться снова.

В последнее время все большее внимание уделяется физическим методам очистки и защиты теплообменного оборудования и в частности с использованием ультразвуковых генераторов, электрогидроимпульсных аппаратов, магнитных устройств. Среди названных методов магнитная обработка обладает следующими преимуществами:

  • простое и удобное обслуживание магнитных аппаратов;
  • небольшие габаритные размеры установки;
  • практически исключается загрязнение окружающей среды, за счет исключения использования химических реагентов;
  • накипеобразование не только предотвращается, но и удаляется старая накипь;
  • за счет образования тонкого слоя магнетита снижается скорость коррозии металла.

Магнитный способ очистки

Обработка воды магнитным способом заключается в воздействии магнитных полей на поток воды. При прохождении воды в межполюсном пространстве магнитного аппарата при наличии ферромагнетиков (например, частиц железа – прим. ред.) в пересыщенном по накипеобразователю растворе (воде) образуются зародыши центров кристаллизации, которые начинают расти, вызывая объемную кристаллизацию солей жидкости. В результате вместо накипи образуется тонкодисперсная взвесь, частицы которой, достигнув определенного размера, образуют шлам.

Источниками магнитного поля в аппаратах магнитной обработки воды могут быть как постоянные магниты, так и электромагниты. Собственно аппараты подразделяются на две группы:

  • с постоянными магнитами – для обработки подпиточной воды паровых котлов низкого и среднего давления;
  • с электромагнитами на постоянном и переменном токе – для обработки воды водогрейных котлов, теплосетей, систем оборотного охлаждения.

Противонакипной эффект, получаемый при наложении магнитного поля, определяется как параметрами аппарата (магнитная индукция, скорость потока обрабатываемой воды, время воздействия и т.п.), так и во многом показателями качества обрабатываемой воды.

Метод магнитной обработки воды и предотвращения образования накипи на поверхностях нагрева теплообменных аппаратов получил свое продолжение в методе магнитоимпульсной очистки реализованный в электромагнитных пульсаторах ПЭ (ТУ РБ 99009425.001-99) разработанных Пронским Г.К. Суть метода состоит в воздействии на очищаемые поверхности переменного магнитного поля определенных оптимальных параметров по амплитуде, частоте, скорости нарастания и убывания, закона изменения во времени. Электронный блок формирует импульсный ток, поступающий на электромагнитные преобразователи. Переменное магнитное поле, создаваемое преобразователями, вызывает на поверхностях нагрева магнитострикционные колебания сдвига на межатомном уровне, приводящие к отслоению отложений. В результате происходит отслаивание, дробление, частичное превращение в сметанообразную массу солей накипи и частичное растворение ее намагниченной водой, что позволяет удалять ее из теплообменного оборудования в процессе продувок и дренирования.

Система защиты от отложений на базе ПЭ устанавливается на работающем оборудовании на весь период эксплуатации и предназначены для магнитной обработки воды с целью разрыхления накипи и шлама и препятствия в дальнейшем ее образования на поверхностях нагрева теплоэнергетического и теплообменного оборудования (водогрейные и паровые котлы, теплообменники и др.).

Напряжение питания – 36 В. Максимальная мощность – 15 Вт. Напряженность магнитного поля не более – 150 Эрстед. Применяя несколько электромагнитных пульсаторов ПЭ можно защитить все теплообменное и теплоэнергетическое оборудование одной котельной, ЦТП и т.п. По результатам актов испытаний в промышленных условиях начало разрушения и отслаивания отложений от стенок теплообменного и теплоэнергетического оборудования начинает наблюдаться после десяти суток работы электромагнитных пульсаторов ПЭ. В дальнейшем накипь опадает или превращается в сметанообразную массу, смываемую проточной водой.

Эффективность разрушения и отслаивания накипи на поверхностях нагрева теплообменного и теплоэнергетического оборудования с малым теплонапряжением – до 95% за первый месяц работы.

Применение электромагнитных пульсаторов ПЭ позволяет эксплуатировать теплообменное и теплоэнергетическое оборудование с поддержанием его технико-экономических показателей в нормативных пределах.

В настоящее время в Белорусском теплоэнергетическом институте завершаются исследования по выбору и оптимальным условиям использования названных систем защиты для различных типов теплообменного оборудования и различны параметров.

А.Ф.Молочко, директор, А.В.Трич, заведующий лабораторией, БЕЛТЭИ, Минск
www.rosteplo.ru